Vehicle Sideslip Angle Estimation Using Deep Ensemble-based Adaptive Kalman Filter

Dongchan Kim, Kyushik Min, Hayoung Kim and Kunsoo Huh

Department of Automotive Engineering at Hanyang University, Korea jookker@hanyang.ac.kr

Motivation and Objective

The objective is to estimate vehicle sideslip angle accurately and robustly with a novel scheme combining deep neural network and nonlinear Kalman filters

Highlights

A novel sideslip angle estimation scheme is proposed combining DNN and EKF/UKF
The initial estimate and its uncertainty are obtained from deep ensemble
The outputs of deep ensemble are utilized in EKF/UKF for the final estimate
Combining the DNN with EKF/UKF improves the estimation performance significantly
The proposed method is validated under various road surface conditions

Approach

1. Deep Ensemble-based Virtual Sensor

Deep ensemble is used to obtain not only the **robust estimate** but also the uncertainty of the estimate.

Fig. 1. Network for sideslip angle and standard deviation estimation

2. Adaptive Kalman Filters

Vehicle dynamics model

3-DOF bicycle model

Algorithm

- The initial estimate and its uncertainty are obtained from deep ensemble
- The measurement vector and noise covariance matrix are updated
- General EKF/UKF process
- Reliability of deep ensemble is automatically determined by the uncertainty of the estimate from deep ensemble

Fig. 2. Overall architecture of the proposed method

Results

Simulation

Verification through Carsim simulator

- Training Dataset
 - Two different road conditions ($\mu = 0.3, 0.85$)

Maneuver	SWA (deg)	Velocity (kph)	frequency (Hz)	surface
Ramp steering	±120	40/60/80/100/20-120	(-)	dry asphalt (μ = 0.85)
Swept steering	$\pm 40/\pm 60/\pm 80/\pm 100$	40/60/80/100/20-120	0.2 ightarrow 0.5	dry asphalt (μ = 0.85)
Sine steering	±100	60–100	0.2/0.5	dry asphalt (μ = 0.85)
Ramp steering	± 100	40/60/80/20-100	(-)	snow ($\mu = 0.3$)
Swept steering	$\pm 40/\pm 60/\pm 80$	40/60/80/20-100	0.2 ightarrow 0.5	snow ($\mu = 0.3$)
Sine steering	± 60	60–100	0.2/0.5	snow ($\mu = 0.3$)

- Test Dataset
 - Includes new maneuvers and road conditions

 $(\mu = 0.2, 0.3, 0.5, 0.85)$

	Scenario description	Velocity (kph)	Time [s]
Scne. 1	DLC (Double Lane Change) on dry asphalt road (μ = 0.85)	120	10
Scne. 2	DLC on snowy road (μ = 0.3)	120	10
Scne. 3	Sine steering (± 100 deg, 0.25 Hz) on dry asphalt road (μ = 0.85)	$70 \rightarrow 120 \ (+1m/s^2)$	45
Scne. 4	Sine steering (± 100 deg, 0.25 Hz) on snowy road (μ = 0.3)	$70 \rightarrow 90 \ (+1m/s^2)$	45
Scne. 5	Drift to the left on new road surface ($\mu = 0.5$)	120	15
Scne. 6	Sine steering (± 100 deg, 0.25 Hz) on new road surface (μ = 0.5)	$70 \rightarrow 90 \ (+1m/s^2)$	45
Scne. 7	Step steering (+100 deg) on new road surface (μ = 0.2)	90	15

■ The maximum error improvement of the proposed method is **3.60 deg** compared to DNN only, **1.53 deg** to EKF only and **1.02 deg** to UKF only, respectively, in the sideslip angle estimation.

Fig. 3. Simulation results for test scenario 4

Experiment

Verification through the test vehicle equipped with an optical sensor

■ The maximum error improvement of the proposed method is **0.36 deg** compared to DNN only, **1.01 deg** to EKF only and **1.16 deg** to UKF only, respectively, in the sideslip angle estimation.

Fig. 4. Experimental results for test scenario 2